Sciact
  • EN
  • RU

A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning Научная публикация

Журнал Journal of Siberian Federal University. Mathematics & Physics
ISSN: 1997-1397 , E-ISSN: 2313-6022
Вых. Данные Год: 2024, Том: 17, Номер: 2, Страницы: 238-245 Страниц : 8
Ключевые слова machine learning, convolutional neural networks, Monte Carlo methods, Ising model, scaling, correlation length, magnetic susceptibility
Авторы Chubarova A.A. 1 , Mamonova M.V. 1 , Prudnikov P.V. 2
Организации
1 Dostoevsky Omsk State University, Omsk, Russian Federation
2 Center of New Chemical Technologies BIC Boreskov Institute of Catalysis SB RAS, Omsk, Russian Federation

Информация о финансировании (2)

1 Российский научный фонд 23-22-00093
2 Министерство науки и высшего образования Российской Федерации FWUR-2024-0039

Реферат: In the field of condensed matter physics, machine learning methods have become an increasingly important instrument for researching phase transitions. Here we present a method for calculating the universal characteristics of spin models using an Ising model that is exactly solvable in two dimensions. The method is based on a convolutional neural network (CNN) with controlled learning. The scaling functions prove the continuing type of phase transition for the 2D Ising model. As a result of the proposed technique, it has been possible to calculate correlation length directly
Библиографическая ссылка: Chubarova A.A. , Mamonova M.V. , Prudnikov P.V.
A study of the scaling behavior of the two-dimensional Ising model by methods of machine learning
Journal of Siberian Federal University. Mathematics & Physics. 2024. V.17. N2. P.238-245. WOS РИНЦ
Даты:
Поступила в редакцию: 10 сент. 2023 г.
Принята к публикации: 27 янв. 2024 г.
Идентификаторы БД:
Web of science: WOS:001203106200009
РИНЦ: 66229553
Цитирование в БД:
БД Цитирований
РИНЦ 1